Clothing recognition is a societally and commercially important yet extremely challenging problem due to large variations in clothing appearance, layering, style, and body shape and pose. In this paper, we tackle the clothing parsing problem using a retrieval-based approach. For a query image, we find similar styles from a large database of tagged fashion images and use these examples to recognize clothing items in the query. Our approach combines parsing from: pre-trained global clothing models, local clothing models learned on the fly from retrieved examples, and transferred parse-masks (Paper Doll item transfer) from retrieved examples. We evaluate our approach extensively and show significant improvements over previous state-of-the-art for both localization (clothing parsing given weak supervision in the form of tags) and detection (general clothing parsing). Our experimental results also indicate that the general pose estimation problem can benefit from clothing parsing.
Etiket: Tamara L. Berg
Makale: TREETALK: Composition and Compression of Trees for Image Descriptions
We present a new tree based approach to composing expressive image descriptions that makes use of naturally occuring web images with captions. We investigate two related tasks: image caption generalization and generation, where the former is an optional subtask of the latter. The high-level idea of our approach is to harvest expressive phrases (as tree fragments) from existing image descriptions, then to compose a new description by selectively combining the extracted (and optionally pruned) tree fragments. Key algorithmic components are tree composition and compression, both integrating tree structure with sequence structure. Our proposed system attains significantly better performance than previous approaches for both image caption generalization and generation. In addition, our work is the first to show the empirical benefit of automatically generalized captions for composing natural image descriptions.
Makale: Runway to Realway: Visual Analysis of Fashion
Clothing and fashion are an integral part of our everyday lives. In this paper we present an approach to studying fashion both on the runway and in more real-world settings, computationally, and at large scale, using computer vision. Our contributions include collecting a new runway dataset, designing features suitable for capturing outfit appearance, collecting human judgments of outfit similarity, and learning similarity functions on the features to mimic those judgments. We provide both intrinsic and extrinsic evaluations of our learned models to assess performance on outfit similarity prediction as well as season, year, and brand estimation. An example application tracks visual trends as runway fashions filter down to “realway” street fashions.