Stanford Üniversitesi “CS231n: Convolutional Neural Networks for Visual Recognition” dersi kapsamında hazırlanan 200 çalışmadan 130’u erişime açıldı. Darısı bizim üniversitelerimizin başına. Çalışma raporlarına erişmek için: http://cs231n.stanford.edu/reports2016.html
Etiket: Stanford University
Derin Öğrenme Yaz Okulu 2015
Derin Öğrenme Yaz Okulu Montreal/Kanada’da Ağustos 2015 ayında icra edildi. 10 günlük faaliyette derin öğrenmenin kullanım alanlarına yönelik konusunda uzman kişilerin katıldığı sunumlar ve otonom sistem demoları yapıldı. Aşağıda günlük programlar halinde sunulan sunumları indirip inceleyebilirsiniz.
1’inci Gün – 03 Ağustos 2015 |
---|
Pascal Vincent: Intro to ML |
Yoshua Bengio: Theoretical motivations for Representation Learning & Deep Learning |
Leon Bottou: Intro to multi-layer nets |
2’nci Gün – 04 Ağustos 2015 |
---|
Hugo Larochelle: Neural nets and backprop |
Leon Bottou: Numerical optimization and SGD, Structured problems & reasoning |
Hugo Larochelle: Directed Graphical Models and NADE |
Intro to Theano |
3’üncü Gün – 05 Ağustos 2015 |
---|
Aaron Courville: Intro to undirected graphical models |
Honglak Lee: Stacks of RBMs |
Pascal Vincent: Denoising and contractive auto-encoders, manifold view |
4’üncü Gün – 06 Ağustos 2015 |
---|
Roland Memisevic: Visual features |
Honglak Lee: Convolutional networks |
Graham Taylor: Learning similarit |
5’inci Gün – 07 Ağustos 2015 |
---|
Chris Manning: NLP 101 |
Graham Taylor: Modeling human motion, pose estimation and tracking |
Chris Manning: NLP / Deep Learning |
6’ncı Gün – 08 Ağustos 2015 |
---|
Ruslan Salakhutdinov: Deep Boltzmann Machines |
Adam Coates: Speech recognition with deep learning |
Ruslan Salakhutdinov: Multi-modal models |
7’nci Gün – 09 Ağustos 2015 |
---|
Ian Goodfellow: Structure of optimization problems |
Adam Coates: Systems issues and distributed training |
Ian Goodfellow: Adversarial examples |
8’inci Gün – 10 Ağustos 2015 |
---|
Phil Blunsom: From language modeling to machine translation |
Richard Socher: Recurrent neural networks |
Phil Blunsom: Memory, Reading, and Comprehension |
9’uncu Gün – 11 Ağustos 2015 |
---|
Richard Socher: DMN for NLP |
Mark Schmidt: Smooth, Finite, and Convex Optimization |
Roland Memisevic: Visual Features II |
10’uncu Gün – 12 Ağustos 2015 |
---|
Mark Schmidt: Non-Smooth, Non-Finite, and Non-Convex Optimization |
Aaron Courville: VAEs and deep generative models for vision |
Yoshua Bengio: Generative models from auto-encoder |
Tüm sunumları indirmek için tıklayınız.
Kaynaklar:
Tez: Recursive Deep Learning for Natural Language Processing and Computer Vision
Info |
---|
Richard Socher |
Ph.D. Thesis |
2014 |
Stanford University |
As the amount of unstructured text data that humanity produces overall and on the Internet grows, so does the need to intelligently process it and extract different types of knowledge from it. My research goal in this thesis is to develop learning models that can automatically induce representations of human language, in particular its structure and meaning in order to solve multiple higher level language tasks.
There has been great progress in delivering technologies in natural language processing such as extracting information, sentiment analysis or grammatical analysis. However, solutions are often based on different machine learning models. My goal is the development of general and scalable algorithms that can jointly solve such tasks and learn the necessary intermediate representations of the linguistic units involved. Furthermore, most standard approaches make strong simplifying language assumptions and require well designed feature representations. The models in this thesis address these two shortcomings. They provide effective and general representations for sentences without assuming word order independence. Furthermore, they provide state of the art performance with no, or few manually designed features.