With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the state of the art in computer vision is advancing rapidly. One important factor for continued progress is to understand the representations that are learned by the inner layers of these deep architectures. Here we show that object detectors emerge from training CNNs to perform scene classification. As scenes are composed of objects, the CNN for scene classification automatically discovers meaningful objects detectors, representative of the learned scene categories. With object detectors emerging as a result of learning to recognize scenes, our work demonstrates that the same network can perform both scene recognition and object localization in a single forward-pass, without ever having been explicitly taught the notion of objects.
Etiket: Convolutional Neural Networks
Makale: DIGITS: the Deep learning GPU Training System
DIGITS is a deep learning training system with a web interface. Tools are provided for designing custom network architectures and for rapidly evaluating their effectiveness through various visualizations of training outputs and learned network parameters allowing for rapid prototyping and collaboration.