Skip to main content

Ankara Pratik Caffe Eğitimi

Eğitim sunum dosyasına aşağıdaki adresden erişebilirsiniz.

Verisetleri:
https://drive.google.com/file/d/0B1e3ezF9sNH7U2hsTnhnTVhRYU0/view?usp=sharing

Caffe derin öğrenme kütüphanesinin bir profesyonel tarafından anlatılacağı bu eğitimi kaçırmayın.

Tarih/Saat: 05 Kasım 2016 / 10.00-11.00

Yer: Kıvılcım/Ankara

Konuşmacı: Birol Kuyumcu

Konuşmacı Hakkında: 2005 yılından beri Görüntü işleme, Yapay Zeka Uygulamaları konularınında işlendiği bir blog yazıyor. Serbest çalışan olarak çeşitli görüntü işlem projelerinde çalıştı. Bir Computervision kütüphanesi Olan OpenCv konusundaki ilk Türkçe kitabı yazdı. Hali hazırda bir e-ticaret sitesi için görsel bazlı çözümler üzerine çalışıyor.

Kayıt adresi: https://www.meetup.com/Ankara-Deep-Learning/events/235134662/

Görüntü Tespitinde FPGA ve Derin Öğrenme Kullanımı

Derin öğrenmenin 2012 yılından bu yana hızla yaygınlaşması ve görüntü tespitindeki doğruluk oranının artmasında GPU mimarisinin kullanılması büyük bir rol oynamaktadır (GPU mimarileri CPU mimarilerine göre daha fazla çekirdek barındırdığından paralel işlem bakımından üstünlük barındırmaktır).

Derin öğrenme için GPU kullanmak zorunda mıyız? şeklinde bir soru aklınıza gelebilir. Bu soruyu doğru cevaplamak için son dönemde üzerinde çalışılan alternatif çözümlere de bakmamız gerekiyor.

Altera Startix 10

Bu yazıda özellikle konuyla ilgili çalışma yapmak isteyenler için çeşitli makaleler paylaşılmıştır. FPGA platformları (FPGA Nedir?) GPU platformları kadar hızlı olmasa da enerji tüketimi dikkate alındığında tercih sebebi olabiliyorlar. Microsoft Open Cloud Server yapısında enerji tüketiminin GPU’lara göre dha az olması nedeniyle FPGA kullanmakta. Derin öğrenmenin bir eğitim bir de uygulama safhası dikkate alındığında, eğitim safhasında FPGA kullanmak işleri çıkmaza sokabilir. İşte bu nedenle Facebook hergün sisteme yüklenen 600 milyon fotografla anlamlı veri elde etmek için GPU yapısı kullanmaktadır.

Verisetinizi eğittikten sonra elde ettiğiniz modelinizi kullanmak için FPGA kullanmayı düşünebilirsiniz. Yazının devamında Altera’nın geliştirdiği FPGA kartı üzerinde yaptığı demo videolarını görebilirsiniz. Demolardan anladığım gerçek zamanlı tanımada FPGA ufakta olsa geçikme yaşıyor.

Güç tüketimi bakımından FPGA uygulamada tercih sebebi olacaksa bir de uygulama yazımı konusunu değerlendirmek gerekiyor. FPGA platformlarına kod yazan uzman sayısının az olduğu, nispetende zorluklar barındırdığı gözardı edilmemelidir.

Peki, güç tüketimi konusu değerlendirildiğinde GPU tabanlı alternatif bir çözüm yok mu? NVIDIA Jetson TX1 düşük güç tüketimi yanında sağlamış olduğu altyapı desteği sayesinde geliştiriciler için alışmış oldukları ortamı bırakmadan GPU mimarisinin sağlamış olduğu tüm olanakları gömülü donanım hızlandırmalı olarak kullanma imkanı sunuyor.

GPU dışındaki diğer yapılar:

Google, makine öğrenmesi ve TensorFlow için Tensor Processing Unit (TPU) yapısına sahip. Söz konusu işlemci Google’ın birçok ürününde hizmet vermeye başladı. Bu mimari özellikle düşük enerji tüketimi bakımından GPU’lara göre daha uygun gözüküyor.

Tensor Processing Unit board

IBM TrueNorth işlemcisi DARPA SyNAPSE Programı desteği ile geliştirilen ve 70 miliwatt enerji harcayarak saniyede 46 milyar sinaptik işlem yapabilen avuç içi süper bilgisayardır. Kıyaslama açısından bakarsak insan beyni 100 trilyon işlem için 20W harcarken varsayıma dayalı bir bilgisayarın bu kadar işlemi yapabilmesi için 12GW’a ihtiyaç duyulmaktadır. Daha fazla bilgi için http://www.research.ibm.com/articles/brain-chip.shtml adresine bakabilirsiniz.

TrueNorth Chip Core Array

Intel Altera FPGA‘yi bünyesine kattıktan sonra Altera derin öğrenme kullanımına yönelik çalışmalarına hız verdi. Aşağıdaki videolardan ve kaynaklardan detaylara ulaşabilirsiniz.

Convolution Neural Network CNN Implementation on Altera FPGA using OpenCL

FPGAs vs. GPGPUs

Machine Learning on FPGAs: Neural Networks

 

Object Detection and Recognition with Neural Networks

ALTERA ile obje tespiti ve tanıma yapılabiliyorsada gerçek zamanlı işlem geçikmesi sorun teşkil edebilir.

FPGA ile derin öğrenme kullanımına yönelik makaleler:

1. Accelerating Deep Convolutional Neural Networks Using Specialized Hardware

Accelerating Deep Convolutional Neural Networks U sing Specialized Hardware.pdf

2. Deep Learning on FPGAs: Past, Present, and Future

Deep Learning on FPGAs Past Present and Future1602.04283v1.pdf

3. CNNLab: a Novel Parallel Framework for Neural Networks using GPU and FPGA

CNNLab a Novel Parallel Framework for Neural Networks using GPU and FPGA-a Practical Study with Trade-off Analysis.pdf

Kaynaklar:

http://www.fpganedir.com

http://www.newelectronics.co.uk/electronics-technology/intels-programmable-systems-group-takes-its-first-step-towards-an-fpga-based-system-in-package-portfolio/142701/

OpenCL Caffe

https://www.quora.com/Is-implementing-deep-learning-on-FPGAs-a-natural-next-step-after-the-success-with-GPUs

https://www.tractica.com/automation-robotics/fpgas-challenge-gpus-as-a-platform-for-deep-learning

http://www.embedded-vision.com/industry-analysis/technical-articles/fpgas-deep-learning-based-vision-processing

https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/backgrounder/stratix10-floating-point-backgrounder.pdf

http://www.teradeep.com

https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

http://fortune.com/2016/02/29/nervana-deep-learning/

http://www.techrepublic.com/article/ibms-brain-inspired-chip-truenorth-changes-how-computers-think-but-experts-question-its-purpose/

http://www.nextplatform.com/2016/06/21/knights-landing-solid-ground-intels-stake-deep-learning

http://www.nextplatform.com/2016/06/29/universal-fpga-gpu-platform-deep-learning

http://www.heig-vd.ch/docs/default-source/pdf-news-2014/thoma13fpga.pdf

Derin Öğrenme Dersleri

Derin öğrenme çok hızlı bir şekilde yapay zeka alanında büyüme kaydetmektedir. İnsana yakın doğrulukla resim sınıflandırma, ses tanıma, doğal dil işleme, duygu analizi, tavsiye motoru vb. alanlarda gittikçe kullanımı artmaktadır. Uygulama alanlarına yüz tanıma, sahne tanıma, ileri medikal ve farmasötik araştırma, otonom ve kendi kendine giden araçlar dahildir.

Ücretsiz Derin Öğrenme Dersi

NVIDIA, derin öğrenme konusunda online deslere başlıyor.  Bu giriş dersi interaktif ders anlatımı, uygulamalı alıştırmalar ve çalışma saatlerinde öğretim üyesi desteğini içerecek şekilde beş öğretim üyesi tarafından verilecektir.

Bu dersler ile tasarım ve eğitim için gerekli olan becerinin yanında sinir ağı destekli yapay zekayı geniş kapsamlı kullanılan açık kaynak kodlu yapılar ve NVIDIA yazılımı ile kendi uygulamalarınıza entegre etme imkanı bulacaksınız.

HEMEN KAYIT OL!

Bu bir giriş dersi olduğundan derin öğrenme veya GPU progralama tecrübesi gerekmemektedir.

Ders Planı

Tüm dersler Türkiye saatiyle 19.00’da başlayacak ve daha sonra izlenebilmesi için kaydedilecektir.


Gün/Ay Konu
22/07 Ders #1 – Derin Öğrenmeye Giriş (30 dakika + Soru&Cevap) – Video İndir / Youtube, Sunu, Hands-on lab
29/07 Ders #1 için Çalışma Saatleri (1 saatlik Soru&Cevap) – Video İndir / Youtube, Sunu, Soru&Cevap Kaydı
05/08 Ders #2 – DIGITS Başlangıç Rehberi – Resim sınıflandırma için interaktif eğitim sistemi (30 dakika + Soru&Cevap) – Video İndir / Youtube, SunuHands-on lab
12/08 Ders #2 için Çalışma Saatleri (1 saatlik Soru&Cevap) – Video İndir / Youtube, Soru&Cevap Kaydı
19/08 Ders #3 – Caffe Yapısına Başlangıç Rehberi – Video İndir / Stream, Slides, Hands-on Lab
26/08 Ders #3 için Çalışma Saatleri – Video İndir / Youtube, Soru&Cevap Kaydı
02/09 Ders #4 – Theano Yapısına Başlangıç RehberiVideo İndir / Youtube, SunuHands-on Lab
09/09 Ders #4 için Çalışma Saatleri – Video İndir / Youtube
16/09 Ders #5 – Torch Yapısına Başlangıç RehberiVideo İndir / Youtube, SunuHands-on Lab
23/09 Ders #5 için Çalışma Saatleri – Video İndir / Youtube

Çalışma Saatlari oturumundan önce sorularınızı dl-course@nvidia.com adresine gönderebilirsiniz. Böylece öğretim üyeleri oturumlardan önce sorularınıza yönelik faydalı cevaplar hazırlayabilir. Türkçe sorularınız için info@derinogrenme.com adresine e-posta gönderebilir veya iletişim sayfamızı kullanabilirsiniz.

Her derse yönelik hazırlanan uygulamalı alıştırmalara ders süresince nvidia.qwiklab.com adresinden ücretsiz erişilebilirsiniz.

Kaynak: https://developer.nvidia.com/deep-learning-courses

Yukarıdaki yazıda geçen konularla ilgili daha fazla bilgi için:

http://www.sentimentanalizi.com

http://www.verius.com.tr

Caffe | Derin Öğrenme Yapısı

Caffe derin öğrenme yapısı hızlı ve modüler olacak şekilde tasarlanmıştır. Berkeley Vision and Learning Center – BVLC (Berkeley Görüntü ve Öğrenme Merkezi) ve kullanıcı topluluğu tarafından geliştirilmiştir. Yangqing Jia tarafından UC Berkeley’de doktora döneminde hazırlanmıştır. Caffe BSD 2-Clause license altında kullanıma sunulmuştur.

Resim sınıflandırma demosu için tıklayın.

Neden Caffe?

İfade Yapısı yeni ve farklı fikirlerin yada uygulamaların ortaya atılmasını cesaretlendirmektedir. Model ve optimizasyonlar kodlama yapılmaksızın ayar dosyası üzerinden yapılabilmektedir. GPU makine üzerinde eğitim işlemini yapmak için CPU ve GPU değişimi bir etiket ayarı ile gerçekleştirilebilmekte böylece küme bilgisayarlara veya mobil cihazlara yayılım sağlanabilmektedir.

Genişletilebilir kod yapısı aktif geliştirmeyi desteklemektedir. Caffe’nin ilk yılında, 1.000 geliştirici tarafından birçok önemli değişiklik katkısı sağlanmıştır. Hem kod hem de model olarak modern bir yapının tesis edilmesine katkı sağlayanlara teşekkür ederiz.

Hız Caffe’nin araştırma deneyimleri ve endüstri uygulamaları için mükemmel hale getirmiştir. Caffe bir tek NVIDIA K40 GPU* işlemciyle 60 Milyonun üzerinde resmi bir günde işleyebilir.  Bu da anlam çıkarma için 1 ms/resim, öğrenme için 4 ms/resim demektir. Şuna inanıyoruz ki Caffe erişilebilir en hızlı convnet uygulamasıdır.

Topluluk: Caffe hali hazırda akademik araştırma projelerine, girişim prototiplerine ve hatta geniş ölçekli görüntü alanındaki endüstriyel uygulamalar ile konuşma ve multimedyaya güç katmaktadır. Topluluğumuza katılmak için caffe-kullanıcı grubu ve  Github sayfalarını ziyaret edebilirsiniz.

* ILSVRC2012-kazananı SuperVision modeli ve IO önbellekleme. Performans detayları için tıklayınız.

Dokümantasyon

Örnekler

Notebook Örnekleri