Skip to main content

Generative Adversarial Text-to-Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee

This is the code for our ICML 2016 paper on text-to-image synthesis using conditional GANs. You can use it to train and sample from text-to-image models.

dcgan_networkFor setup and usage please visit: https://github.com/reedscot/icml2016

You can also interest in Learning Deep Representations of Fine-grained Visual Descriptions

description_embedding

Derin Öğrenme Dersleri

Derin öğrenme çok hızlı bir şekilde yapay zeka alanında büyüme kaydetmektedir. İnsana yakın doğrulukla resim sınıflandırma, ses tanıma, doğal dil işleme, duygu analizi, tavsiye motoru vb. alanlarda gittikçe kullanımı artmaktadır. Uygulama alanlarına yüz tanıma, sahne tanıma, ileri medikal ve farmasötik araştırma, otonom ve kendi kendine giden araçlar dahildir.

Ücretsiz Derin Öğrenme Dersi

NVIDIA, derin öğrenme konusunda online deslere başlıyor.  Bu giriş dersi interaktif ders anlatımı, uygulamalı alıştırmalar ve çalışma saatlerinde öğretim üyesi desteğini içerecek şekilde beş öğretim üyesi tarafından verilecektir.

Bu dersler ile tasarım ve eğitim için gerekli olan becerinin yanında sinir ağı destekli yapay zekayı geniş kapsamlı kullanılan açık kaynak kodlu yapılar ve NVIDIA yazılımı ile kendi uygulamalarınıza entegre etme imkanı bulacaksınız.

HEMEN KAYIT OL!

Bu bir giriş dersi olduğundan derin öğrenme veya GPU progralama tecrübesi gerekmemektedir.

Ders Planı

Tüm dersler Türkiye saatiyle 19.00’da başlayacak ve daha sonra izlenebilmesi için kaydedilecektir.


Gün/Ay Konu
22/07 Ders #1 – Derin Öğrenmeye Giriş (30 dakika + Soru&Cevap) – Video İndir / Youtube, Sunu, Hands-on lab
29/07 Ders #1 için Çalışma Saatleri (1 saatlik Soru&Cevap) – Video İndir / Youtube, Sunu, Soru&Cevap Kaydı
05/08 Ders #2 – DIGITS Başlangıç Rehberi – Resim sınıflandırma için interaktif eğitim sistemi (30 dakika + Soru&Cevap) – Video İndir / Youtube, SunuHands-on lab
12/08 Ders #2 için Çalışma Saatleri (1 saatlik Soru&Cevap) – Video İndir / Youtube, Soru&Cevap Kaydı
19/08 Ders #3 – Caffe Yapısına Başlangıç Rehberi – Video İndir / Stream, Slides, Hands-on Lab
26/08 Ders #3 için Çalışma Saatleri – Video İndir / Youtube, Soru&Cevap Kaydı
02/09 Ders #4 – Theano Yapısına Başlangıç RehberiVideo İndir / Youtube, SunuHands-on Lab
09/09 Ders #4 için Çalışma Saatleri – Video İndir / Youtube
16/09 Ders #5 – Torch Yapısına Başlangıç RehberiVideo İndir / Youtube, SunuHands-on Lab
23/09 Ders #5 için Çalışma Saatleri – Video İndir / Youtube

Çalışma Saatlari oturumundan önce sorularınızı dl-course@nvidia.com adresine gönderebilirsiniz. Böylece öğretim üyeleri oturumlardan önce sorularınıza yönelik faydalı cevaplar hazırlayabilir. Türkçe sorularınız için info@derinogrenme.com adresine e-posta gönderebilir veya iletişim sayfamızı kullanabilirsiniz.

Her derse yönelik hazırlanan uygulamalı alıştırmalara ders süresince nvidia.qwiklab.com adresinden ücretsiz erişilebilirsiniz.

Kaynak: https://developer.nvidia.com/deep-learning-courses

Yukarıdaki yazıda geçen konularla ilgili daha fazla bilgi için:

http://www.sentimentanalizi.com

http://www.verius.com.tr

Torch Derin Öğrenme Yapısı

Torch Nedir?

Torch makine öğrenme algoritmaları için kapsamlı destek sunan bilimsel hesaplama yapısıdır. Kolay ve hızlı kodlama dili LuaJIT ve C/CUDA uygulaması temelini kullanan kolay ve verimli bir yapıya sahiptir.

Çekirdek özelliklerin bir özeti:

  • güçlü bir N-boyutlu dizi (N-dimensional array)
  • indeksleme, kesme, yer değiştirme vb. bir çok rutin
  • LuaJIT ile hayranlık oluşturan C arayüzü
  • lineer cebir rutinleri
  • sinir ağı ve enerji tabanlı modeller
  • sayısal en iyileme rutinleri
  • Hızlı ve etkili GPU desteği
  • iOS, Android ve FPGA arka ucuna port ile gömülebilme

Neden Torch?

Torch işlemleri oldukça basitleştirirken bilimsel algoritmalarınızı hazırlamayı azami esneklik ve hızda yapmanızı amaçlamaktadır. Torch Lua topluluğunun hazırladıklarının yanısıra makine öğrenmesi, bilgisayarlı görü, sinyal işleme, paralel işlem, resim, video, ses ve ağ iletişimi gibi geniş ekosistem içindeki topluluk tarafından hazırlanmış paketler ile gelmektedir.

Torch’un kalbinde kompleks sinir ağı topolojisini uygulamada had safhada esnek, kullanımı kolay olan popüler sinir ağı ve en iyileme kütüphaneleri vardır. Sinir ağının isteğe bağlı grafiğini oluşturabilir ve CPU’lar ve GPU’lar arasında etkili bir şekilde paralel işlem yapabilirsiniz.

Torch Kullanımı

Torch’u kendi başınıza indirmek ve denemek için Hemen Başla rehberine bakabilirsiniz. Torch açık kaynak kodludur, dolayısıyla GitHub repo üzerinde sunulan kod ile de başlayabilirsiniz.

Torch sürekli geliştirilmektedir: hali hazırda Facebook, Google, Twitter, NYU, IDIAP, Purdue ile çeşitli firma ve araştırma laboratuarları tarafından kullanılmaktadır.