Skip to main content

Derin Öğrenme Yaz Okulu 2015

Derin Öğrenme Yaz Okulu Montreal/Kanada’da Ağustos 2015 ayında icra edildi. 10 günlük faaliyette derin öğrenmenin kullanım alanlarına yönelik konusunda uzman kişilerin katıldığı sunumlar ve otonom sistem demoları yapıldı. Aşağıda  günlük programlar halinde sunulan sunumları indirip inceleyebilirsiniz.

Gelecek yaz döneminde benzer bir faaliyeti ülkemizde yapma konusunda şimdiden  hazırlıklara başladık. Değerli katkılarınızı bekliyoruz.


1’inci Gün – 03 Ağustos 2015
Pascal Vincent: Intro to ML
Yoshua Bengio: Theoretical motivations for Representation Learning & Deep Learning
Leon Bottou: Intro to multi-layer nets

2’nci Gün – 04 Ağustos 2015
Hugo Larochelle: Neural nets and backprop
Leon Bottou: Numerical optimization and SGD, Structured problems & reasoning
Hugo Larochelle: Directed Graphical Models and NADE
Intro to Theano

3’üncü Gün – 05 Ağustos 2015
Aaron Courville: Intro to undirected graphical models
Honglak Lee: Stacks of RBMs
Pascal Vincent: Denoising and contractive auto-encoders, manifold view

4’üncü Gün – 06 Ağustos 2015
Roland Memisevic: Visual features
Honglak Lee: Convolutional networks
Graham Taylor: Learning similarit

5’inci Gün – 07 Ağustos 2015
Chris Manning: NLP 101
Graham Taylor: Modeling human motion, pose estimation and tracking
Chris Manning: NLP / Deep Learning

6’ncı Gün – 08 Ağustos 2015
Ruslan Salakhutdinov: Deep Boltzmann Machines
Adam Coates: Speech recognition with deep learning
Ruslan Salakhutdinov: Multi-modal models

7’nci Gün – 09 Ağustos 2015
Ian Goodfellow: Structure of optimization problems
Adam Coates: Systems issues and distributed training
Ian Goodfellow: Adversarial examples

8’inci Gün – 10 Ağustos 2015
Phil Blunsom: From language modeling to machine translation
Richard Socher: Recurrent neural networks
Phil Blunsom: Memory, Reading, and Comprehension

9’uncu Gün – 11 Ağustos 2015
Richard Socher: DMN for NLP
Mark Schmidt: Smooth, Finite, and Convex Optimization
Roland Memisevic: Visual Features II

10’uncu Gün – 12 Ağustos 2015
Mark Schmidt: Non-Smooth, Non-Finite, and Non-Convex Optimization
Aaron Courville: VAEs and deep generative models for vision
Yoshua Bengio: Generative models from auto-encoder

Tüm sunumları indirmek için tıklayınız.

Kaynaklar:

https://stanfordsailors.wordpress.com

https://sites.google.com/site/deeplearningsummerschool

NVIDIA Derin Öğrenme Dersi #1 Soru ve Cevaplar

NVIDIA’nın düzenlemiş olduğu online derste (29.07.2015) katılımcıların yazılı sorularına verilen cevaplar aşağıda yer almaktadır. Dersle ilgili daha fazla bilgi için tıklayınız.

Chairperson: The recording and slides from the first class are located here https://developer.nvidia.com/deep-learning-courses

Jonathan Bentz: N Frick: I have a question: are any of the recent algorithm advances already “baked” into the DL Frameworks, or is it up to the user to choose the correct preprocessing methods and implement them outside the libraries?

A: Depends what you mean by “algorithm advances”.  In general, the DL frameworks make every attempt to keep up with the current state of the art in deep learning algorithms and so they often implement these directly in the frameworks.

Brent Oster: Sunny Panchal: Once a network has been trained, how well does it adapt to a new set of data that is added with a new classification category?

Yes, this is referred to as fine tuning, and it works because many of the lower-level features are common between datasets. Only the weights for the fully-connected layers need to be adjusted.

Allison Gray: Earl Vickers Question: Can DIGITS handle arbitrary data types without a lot of programming, or is it mainly designed for pictures?

A: Right now you can use square or rectangular images with DIGITS. They can be either color or grayscale. We can also handle different image formats. We plan to expand this in the future.

Earl Vickers Question: Can DIGITS handle arbitrary data types without a lot of programming, or is it mainly designed for pictures?

A: Right now you can use square or rectangular images with DIGITS. They can be either color or grayscale. We can also handle different image formats. We plan to expand this in the future.

Earl Vickers Question: Can DIGITS handle arbitrary data types without a lot of programming, or is it mainly designed for pictures?

A: Right now you can use square or rectangular images with DIGITS. They can be either color or grayscale. We can also handle different image formats. We plan to expand this in the future.

Larry Brown: There are a few questions about invariance in DNNs and including metadata…those questions are more advanced and we will come back to them in a future session.

Brent Oster: Q: Ferhat Kurt: Is it possible to image recognition realtime in a stream (video)?

Devamını Oku

DARPA Radar Hedef Tanıma’da Derin Öğrenme Kullanacak

Amerikan askeri araştırma görevlileri, insanlı ve insansız hava araçlarında radar algılayıcıların kullanılarak askeri hedeflerin hızlı ve doğru teşhis edilmesine yönelik radar hedef tanımada kullanılan bilgisayar algoritmaları için yeni yöntem ve yüksek-performanslı gömülü işlem (high-performance embedded computing – HPEC) mimarilerine ihtiyaç duymuşlardır. Araştırma görevlileri işte bu ihtiyaca yönelik çözümü derin öğrenme ile buldu.

Amerikan Hava Kuvvetleri Araştırma Laboratuarı Deep Learning Analytics ile Target Recognition and Adaption in Contested Environments (TRACE) programı kapsamında 6 milyon dolarlık bir sözleşme imzaladı.

DARPA TRACE programının üç hedefi bulunmaktadır: düşük güçlü hava araçlarında askeri hedefleri tanıma, karmaşık ortamlarda hedef tespitinde düşük yanlış alarm seviyesi ve yeni hedefleri aralıklı veya sınırlı ölçülen eğitim verisi ile hızlı öğrenme.

Radarların güvenli mesafeden yerdeki hedeflerin görüntüsünü alabilmesine rağmen, insan ve makine tabanlı radar resim tanıma yanlış alarm oranı kabul edilemez seviyededir. Ayrıca mevcut hedef tanıma algoritmaları insanlı ve insansız hava araçlarında elverişsiz büyük hesaplama kaynağına ihtiyaç duymaktadır.

Bu zorlukların üstesinden gelmek için TRACE programı kapsamında kesin, gerçek zamanlı, düşük güç ihtiyacı olan hedef tanıma sistemi geliştirecektir.

Bu çalışmada mühendisler gelişmekte olan mobil hesaplama mimarileri, ARM işmeciler gibi genel maksat hesaplama elemanlarını birleştiren bir çip üzerindeki (SoC) çoklu işlemciler, grafik işlemci üniteleri (GPUs) ve FPGA’den (Field Programmable Gate Array – Alanda Programlanabilir Kapı Dizileri) faydalanacaklardır.

Geçtiğimiz 30 yıl içinde radar görüntü tanımaya harcanan paranın büyüklüğü ve elde edilen başarı seviyesi değerlendirildiğinde derin öğrenmenin insan tanıma hata eşiğinin altında yakaladığı başarı ile diğer ülke ordularının da bu alana bir an önce yatırım yapmasını teşvik edecektir.

Yazının devamı için kaynaklara bakabilirsiniz.

Kaynak: