Skip to main content

Open Zeka Derin Öğrenme Servisi Model Yapıları

Open Zeka Servisi geliştirilmesinde kullanılan modellerin geliştirilmesinde kullanılan kaynaklara aşağıdan erişebilirsiniz.

  1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    https://github.com/rbgirshick/py-faster-rcnn
  2. DeepBox: Learning Objectness with Convolutional Networks  (Experiments on both PASCAL and COCO)
    https://github.com/weichengkuo/DeepBox
    https://porter.io/github.com/weichengkuo/DeepBox
  3. Places2
    http://places2.csail.mit.edu/
    http://image-net.org/challenges/talks/WM_presentation.pdf
  4. Coco
    http://image-net.org/challenges/talks/COCO-ICCV15-clean.pdf
  5. http://image-net.org/challenges/ilsvrc+mscoco2015
  6. Yüz tanıma
    1. Yüz tanıma kütüphane: http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
    2. https://github.com/AlfredXiangWu/face_verification_experiment
    3. https://github.com/RiweiChen/DeepFace
    4. Veritabanı indirmek için: https://github.com/lightalchemist/FaceScrub
    5. http://arxiv.org/abs/1501.02876v4
    6. DeepFace: Closing the Gap to Human-Level Performance in Face Verification
    7. Yüz veritabanı: http://vis-www.cs.umass.edu/lfw/#download
    8. 40 GB yüz veritabanı http://wlfdb.stevenhoi.com/
    9. Openface http://cmusatyalab.github.io/openface/
    10. Veriseti http://biometrics.idealtest.org
    11. Veriseti: http://stoudemireyan32.wix.com/yanli#!face-databases/cmme
    12. A Lightened CNN for Deep Face Representation
    13. Veriseti: http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
    14. Veriseti: http://www.cs.tau.ac.il/~wolf/ytfaces/
    15. Learning Face Representation from Scratch
    16. Akadmeik kişi: http://dayongwang.info
    17. Clustering Millions of Faces by Identity
    18. Face Search at Scale: 80 Million Gallery
    19. Örnek kodlar: https://github.com/tambetm/face_kiosk
    20. Kitap: Advances in Face Detection and Facial Image Analysis
    21. http://vintage.winklerbros.net/emotiW.html
    22. caffe yüz kütüphane: https://github.com/guoyilin/caffe
  7. Fashion API
    https://github.com/DeepFashion/Caffe-API
  8. Speech Recognition
    1. https://github.com/pannous/caffe-speech-recognition
    2. https://github.com/pannous/tensorflow-speech-recognition
    3. https://github.com/baidu-research/warp-ctc
    4. https://github.com/SeanNaren/CTCSpeechRecognition
    5. http://svail.github.io/mandarin/
    6. http://deeplearning.stanford.edu/lexfree/
  9. Baidu: https://svail.github.io/
  10. http://www.nervanasys.com/https://github.com/nervanazoo/NervanaModelZoo
  11. https://github.com/karpathy/neuraltalk2
    1. Demo: http://cs.stanford.edu/people/karpathy/neuraltalk2/demo.html
    2. Demodan elde edilen metin sese çevrilecek.
    3. Örnek: metin ses dönüşümü: http://responsivevoice.org/api/
  12. http://songhan.github.io/SqueezeNet-Deep-Compression/
    1. https://github.com/songhan/SqueezeNet-Deep-Compression
    2. https://github.com/DeepScale/SqueezeNet
  13. Örnek servisler
    1. http://emovu.com/e/
  14. Kanser hücre tespiti yarışması http://grand-challenge.org/
  15. İsme göre cinsiyet tespiti: https://genderize.io
  16. LWF veritabanını cinsiyete göre sınıflandırma: https://github.com/Pletron/LFWgender
  17. Yaş ve cinsiyet sınıflandırma: https://github.com/GilLevi/AgeGenderDeepLearning
  18. Duygusal sınıflandırma: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/
  19. Resim metin – Generative Adversarial Text-to-Image Synthesis: https://github.com/reedscot/icml2016
  20. Deep learning API with emotion recognition application: https://github.com/mihaelacr/pydeeplearn
  21. Kütüphaneler:
    1. http://www.vlfeat.org/matconvnet/
  22. Logo tespiti
    1. http://logo-net.org
    2. LOGO-Net: Large-scale Deep Logo Detection and Brand Recognitionwith Deep Region-based Convolutional Networks
    3. Logo veritabanı: http://www-sop.inria.fr/members/Alexis.Joly/BelgaLogos/BelgaLogos.html#download
  23. Servisler
    1. https://www.labell.io/
    2. https://sightengine.com/
    3. http://www.faceall.cn/
    4. http://imagevision.com/
  24. DeepPose implementation nudity
    1. https://github.com/mitmul/deeppose
    2. http://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/42237.pdf
    3. Nudity detection with Python
    4. Applying deep learning to classify pornographic images and videos
  25. Describing Videos with Neural Networks -Neurotalk
  26. Makine kurulumu
    1. The World’s Fastest Deep Learning System Right at Your Desk
  27. Diğer:
    1. convnet-benchmarks: https://github.com/soumith/convnet-benchmarks

Open Zeka Resim Tanıma Web & API Sunucusu Açık Kaynak Kodlu Olarak Yayınlanacak

Open Zeka Resim Tanıma Web & API Sunucusunu, NVIDIA’nın Avrupa’da ilk defa düzenlediği GPU Teknoloji Konfereansında yapılacak sunumu müteakip açık kaynak kodlu olarak kullanıcılara sunacağız. Resmi dağıtımdan önce Open Zeka yazılımı hakkında ilk geri beslemeleri almak için bir tester ekibi oluşturmaya karar verdik. Tester ekibimize katılmak için aşağıdaki formu doldurmanız yeterlidir.

https://goo.gl/forms/o585mmMBT41QCJeh1

Open Zeka Nedir?

Açık kaynak kodlu resim tanıma sunucu yazılımıdır. Open Zeka’nın web arayüzü olduğu gibi API arayüzü de mevcuttur. API arayüzü ile derin öğrenme algoritmalarının tanıma kabiliyetini uygulamalarınızda kullanarak eşsiz deneyimden faydalanabilirsiniz.

Donanım olarak ne gereklidir?

Open Zeka, CPU, GPU ve gömülü (Jetson TX1/Jetson TK1) sistemlerde çalışabilmektedir. GPU’lu makinelerde hızı muhteşemdir.

İnternete bağlanmak gerekli midir?

Open Zeka ile derin öğrenme algoritmaları kendi makinenizde çalışır. Dolayısıyla internet ihtiyacı olmadan kullanabilirsiniz.

Nerede kullanabilirim?

Drone, robot, otonom sistemlerde olduğu gibi görüntü tanıma ihtiyacı olan her uygulamada kullanabilirsiniz.

Görüntü Tespitinde FPGA ve Derin Öğrenme Kullanımı

Derin öğrenmenin 2012 yılından bu yana hızla yaygınlaşması ve görüntü tespitindeki doğruluk oranının artmasında GPU mimarisinin kullanılması büyük bir rol oynamaktadır (GPU mimarileri CPU mimarilerine göre daha fazla çekirdek barındırdığından paralel işlem bakımından üstünlük barındırmaktır).

Derin öğrenme için GPU kullanmak zorunda mıyız? şeklinde bir soru aklınıza gelebilir. Bu soruyu doğru cevaplamak için son dönemde üzerinde çalışılan alternatif çözümlere de bakmamız gerekiyor.

Altera Startix 10

Bu yazıda özellikle konuyla ilgili çalışma yapmak isteyenler için çeşitli makaleler paylaşılmıştır. FPGA platformları (FPGA Nedir?) GPU platformları kadar hızlı olmasa da enerji tüketimi dikkate alındığında tercih sebebi olabiliyorlar. Microsoft Open Cloud Server yapısında enerji tüketiminin GPU’lara göre dha az olması nedeniyle FPGA kullanmakta. Derin öğrenmenin bir eğitim bir de uygulama safhası dikkate alındığında, eğitim safhasında FPGA kullanmak işleri çıkmaza sokabilir. İşte bu nedenle Facebook hergün sisteme yüklenen 600 milyon fotografla anlamlı veri elde etmek için GPU yapısı kullanmaktadır.

Verisetinizi eğittikten sonra elde ettiğiniz modelinizi kullanmak için FPGA kullanmayı düşünebilirsiniz. Yazının devamında Altera’nın geliştirdiği FPGA kartı üzerinde yaptığı demo videolarını görebilirsiniz. Demolardan anladığım gerçek zamanlı tanımada FPGA ufakta olsa geçikme yaşıyor.

Güç tüketimi bakımından FPGA uygulamada tercih sebebi olacaksa bir de uygulama yazımı konusunu değerlendirmek gerekiyor. FPGA platformlarına kod yazan uzman sayısının az olduğu, nispetende zorluklar barındırdığı gözardı edilmemelidir.

Peki, güç tüketimi konusu değerlendirildiğinde GPU tabanlı alternatif bir çözüm yok mu? NVIDIA Jetson TX1 düşük güç tüketimi yanında sağlamış olduğu altyapı desteği sayesinde geliştiriciler için alışmış oldukları ortamı bırakmadan GPU mimarisinin sağlamış olduğu tüm olanakları gömülü donanım hızlandırmalı olarak kullanma imkanı sunuyor.

GPU dışındaki diğer yapılar:

Google, makine öğrenmesi ve TensorFlow için Tensor Processing Unit (TPU) yapısına sahip. Söz konusu işlemci Google’ın birçok ürününde hizmet vermeye başladı. Bu mimari özellikle düşük enerji tüketimi bakımından GPU’lara göre daha uygun gözüküyor.

Tensor Processing Unit board

IBM TrueNorth işlemcisi DARPA SyNAPSE Programı desteği ile geliştirilen ve 70 miliwatt enerji harcayarak saniyede 46 milyar sinaptik işlem yapabilen avuç içi süper bilgisayardır. Kıyaslama açısından bakarsak insan beyni 100 trilyon işlem için 20W harcarken varsayıma dayalı bir bilgisayarın bu kadar işlemi yapabilmesi için 12GW’a ihtiyaç duyulmaktadır. Daha fazla bilgi için http://www.research.ibm.com/articles/brain-chip.shtml adresine bakabilirsiniz.

TrueNorth Chip Core Array

Intel Altera FPGA‘yi bünyesine kattıktan sonra Altera derin öğrenme kullanımına yönelik çalışmalarına hız verdi. Aşağıdaki videolardan ve kaynaklardan detaylara ulaşabilirsiniz.

Convolution Neural Network CNN Implementation on Altera FPGA using OpenCL

FPGAs vs. GPGPUs

Machine Learning on FPGAs: Neural Networks

 

Object Detection and Recognition with Neural Networks

ALTERA ile obje tespiti ve tanıma yapılabiliyorsada gerçek zamanlı işlem geçikmesi sorun teşkil edebilir.

FPGA ile derin öğrenme kullanımına yönelik makaleler:

1. Accelerating Deep Convolutional Neural Networks Using Specialized Hardware

Accelerating Deep Convolutional Neural Networks U sing Specialized Hardware.pdf

2. Deep Learning on FPGAs: Past, Present, and Future

Deep Learning on FPGAs Past Present and Future1602.04283v1.pdf

3. CNNLab: a Novel Parallel Framework for Neural Networks using GPU and FPGA

CNNLab a Novel Parallel Framework for Neural Networks using GPU and FPGA-a Practical Study with Trade-off Analysis.pdf

Kaynaklar:

http://www.fpganedir.com

http://www.newelectronics.co.uk/electronics-technology/intels-programmable-systems-group-takes-its-first-step-towards-an-fpga-based-system-in-package-portfolio/142701/

OpenCL Caffe

https://www.quora.com/Is-implementing-deep-learning-on-FPGAs-a-natural-next-step-after-the-success-with-GPUs

https://www.tractica.com/automation-robotics/fpgas-challenge-gpus-as-a-platform-for-deep-learning

http://www.embedded-vision.com/industry-analysis/technical-articles/fpgas-deep-learning-based-vision-processing

https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/backgrounder/stratix10-floating-point-backgrounder.pdf

http://www.teradeep.com

https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

http://fortune.com/2016/02/29/nervana-deep-learning/

http://www.techrepublic.com/article/ibms-brain-inspired-chip-truenorth-changes-how-computers-think-but-experts-question-its-purpose/

http://www.nextplatform.com/2016/06/21/knights-landing-solid-ground-intels-stake-deep-learning

http://www.nextplatform.com/2016/06/29/universal-fpga-gpu-platform-deep-learning

http://www.heig-vd.ch/docs/default-source/pdf-news-2014/thoma13fpga.pdf

NVIDIA® Jetson™ Türkiye Satışı Başladı

Derin öğrenme girişimi olan Open Zeka firmasının NVIDIA® ile yaptığı anlaşma sonucunda NVIDIA® Jetson™ TX1 Developer Kit ve NVIDIA® Jetson™ TK1 Developer Kit satışı başladı. Söz konusu ürünler derin öğrenme ve görüntü işleme algoritmalarını gömülü olarak düşük enerji ile çalıştırabilen ileri teknolojiyi barındırmaktadır. Ürünler hakkında daha fazla bilgi almak ve sipariş vermek için aşağıdaki bağlantılara bakabilirsiniz.

NVIDIA® Jetson™ satış sitesi

NVIDIA® Jetson™ TX1 Developer Kit sipariş sayfası

NVIDIA® Jetson™ TK1 Developer Kit sipariş sayfası

 

Amazon DSSTNE: Deep Scalable Sparse Tensor Network Engine

Yeni bir açık kaynak kodlu derin öğrenme kütüphanemiz daha oldu. Microsoft CNTK, Google TensorFlow, Samsung VELES derken şimdi de Amazon derin öğrenme ve makine öğrenmesi kütüphanesi Amazon DSSTNE‘yi açık kaynak kodlu olarak kullanıma sundu.

Amazon, kütüphanesi ile ilgili kullanımı kolaylaştırıcı seçenekler ile gayet kolay bir kurulum imkanı sunuyor. Örnekler konusunda ise sanki biraz hazırlıksız sunum yapılmış gibi. Doküman kısmında sadece bir örnek bulunuyor. Denemek isterseniz yaklaşık 1 saatlik süreç sonucunda kütüphaneyi kurup ilk tavsiye kodunuzu çalıştırabilirsiniz.

İndirme adresi: https://github.com/amznlabs/amazon-dsstne