Skip to main content

Open Zeka Derin Öğrenme Servisi Model Yapıları

Open Zeka Servisi geliştirilmesinde kullanılan modellerin geliştirilmesinde kullanılan kaynaklara aşağıdan erişebilirsiniz.

  1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    https://github.com/rbgirshick/py-faster-rcnn
  2. DeepBox: Learning Objectness with Convolutional Networks  (Experiments on both PASCAL and COCO)
    https://github.com/weichengkuo/DeepBox
    https://porter.io/github.com/weichengkuo/DeepBox
  3. Places2
    http://places2.csail.mit.edu/
    http://image-net.org/challenges/talks/WM_presentation.pdf
  4. Coco
    http://image-net.org/challenges/talks/COCO-ICCV15-clean.pdf
  5. http://image-net.org/challenges/ilsvrc+mscoco2015
  6. Yüz tanıma
    1. Yüz tanıma kütüphane: http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
    2. https://github.com/AlfredXiangWu/face_verification_experiment
    3. https://github.com/RiweiChen/DeepFace
    4. Veritabanı indirmek için: https://github.com/lightalchemist/FaceScrub
    5. http://arxiv.org/abs/1501.02876v4
    6. DeepFace: Closing the Gap to Human-Level Performance in Face Verification
    7. Yüz veritabanı: http://vis-www.cs.umass.edu/lfw/#download
    8. 40 GB yüz veritabanı http://wlfdb.stevenhoi.com/
    9. Openface http://cmusatyalab.github.io/openface/
    10. Veriseti http://biometrics.idealtest.org
    11. Veriseti: http://stoudemireyan32.wix.com/yanli#!face-databases/cmme
    12. A Lightened CNN for Deep Face Representation
    13. Veriseti: http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
    14. Veriseti: http://www.cs.tau.ac.il/~wolf/ytfaces/
    15. Learning Face Representation from Scratch
    16. Akadmeik kişi: http://dayongwang.info
    17. Clustering Millions of Faces by Identity
    18. Face Search at Scale: 80 Million Gallery
    19. Örnek kodlar: https://github.com/tambetm/face_kiosk
    20. Kitap: Advances in Face Detection and Facial Image Analysis
    21. http://vintage.winklerbros.net/emotiW.html
    22. caffe yüz kütüphane: https://github.com/guoyilin/caffe
  7. Fashion API
    https://github.com/DeepFashion/Caffe-API
  8. Speech Recognition
    1. https://github.com/pannous/caffe-speech-recognition
    2. https://github.com/pannous/tensorflow-speech-recognition
    3. https://github.com/baidu-research/warp-ctc
    4. https://github.com/SeanNaren/CTCSpeechRecognition
    5. http://svail.github.io/mandarin/
    6. http://deeplearning.stanford.edu/lexfree/
  9. Baidu: https://svail.github.io/
  10. http://www.nervanasys.com/https://github.com/nervanazoo/NervanaModelZoo
  11. https://github.com/karpathy/neuraltalk2
    1. Demo: http://cs.stanford.edu/people/karpathy/neuraltalk2/demo.html
    2. Demodan elde edilen metin sese çevrilecek.
    3. Örnek: metin ses dönüşümü: http://responsivevoice.org/api/
  12. http://songhan.github.io/SqueezeNet-Deep-Compression/
    1. https://github.com/songhan/SqueezeNet-Deep-Compression
    2. https://github.com/DeepScale/SqueezeNet
  13. Örnek servisler
    1. http://emovu.com/e/
  14. Kanser hücre tespiti yarışması http://grand-challenge.org/
  15. İsme göre cinsiyet tespiti: https://genderize.io
  16. LWF veritabanını cinsiyete göre sınıflandırma: https://github.com/Pletron/LFWgender
  17. Yaş ve cinsiyet sınıflandırma: https://github.com/GilLevi/AgeGenderDeepLearning
  18. Duygusal sınıflandırma: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/
  19. Resim metin – Generative Adversarial Text-to-Image Synthesis: https://github.com/reedscot/icml2016
  20. Deep learning API with emotion recognition application: https://github.com/mihaelacr/pydeeplearn
  21. Kütüphaneler:
    1. http://www.vlfeat.org/matconvnet/
  22. Logo tespiti
    1. http://logo-net.org
    2. LOGO-Net: Large-scale Deep Logo Detection and Brand Recognitionwith Deep Region-based Convolutional Networks
    3. Logo veritabanı: http://www-sop.inria.fr/members/Alexis.Joly/BelgaLogos/BelgaLogos.html#download
  23. Servisler
    1. https://www.labell.io/
    2. https://sightengine.com/
    3. http://www.faceall.cn/
    4. http://imagevision.com/
  24. DeepPose implementation nudity
    1. https://github.com/mitmul/deeppose
    2. http://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/42237.pdf
    3. Nudity detection with Python
    4. Applying deep learning to classify pornographic images and videos
  25. Describing Videos with Neural Networks -Neurotalk
  26. Makine kurulumu
    1. The World’s Fastest Deep Learning System Right at Your Desk
  27. Diğer:
    1. convnet-benchmarks: https://github.com/soumith/convnet-benchmarks

Ferhat Kurt

NVIDIA Deep Learning Institute Sertifikalı eğitmen.

Bir Cevap Yazın

Bu site, istenmeyenleri azaltmak için Akismet kullanıyor. Yorum verilerinizin nasıl işlendiği hakkında daha fazla bilgi edinin.